Emergent Graphs with PCA-features for Improved Face Recognition
نویسندگان
چکیده
Built on the principles of “Learning from Nature” and “Self-organization” Elastic Bunch Graph Matching for face recognition is a defining example for Organic Computing methodology. Here, we follow these principles further to advance the method in two respects. First, the requirement for manual annotation of landmarks is reduced to one single face, from which a self-organizing selection process gradually builds up the bunches by adding the most similar face to the bunch graph and then recalculating the matching. Second, the resulting bunches are replaced by the principal components of the nodes of all persons in the database. The similarity function is restricted to a suitable subset of these components. The additional self-organizing processes lead to improved precision of landmark localization and recognition rates. Altogether, an improved data structure for face storage has emerged from the simple presentation of examples in a minimally supervised way.
منابع مشابه
Face Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملتشخیص چهره با استفاده از PCA و فیلتر گابور
Methods for face recognition which are based on face structure are among techniques without supervision and produce unfavorable results in the presence of linear changes in images. PCA is a linear transform and a powerful tool for data analysis but does not produce good results for face recognition when there are non-linear changes resulting from changes in position, intensity and gesture in th...
متن کاملFacial expression recognition based on Local Binary Patterns
Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...
متن کاملOptimized Method for Real-Time Face Recognition System Based on PCA and Multiclass Support Vector Machine
Automatic face recognition system is one of the core technologies in computer vision, machine learning, and biometrics. The present study presents a novel and improved way for face recognition. In the suggested approach, first, the place of face is extracted from the original image and then is sent to feature extraction stage, which is based on Principal Component Analysis (PCA) technique. In t...
متن کاملAcquiring Non Linear Subspace for Face Recognition using Symbolic Kernel PCA Method
In this paper, a new technique called symbolic kernel Principal Component Analysis (KPCA) is explored to develop a model for face representation and recognition. The conventional kernel PCA method extracts single valued features from the original image space to represent face images. The proposed method reduces the dimensionality of original image space by representing the face images as symbol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006